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ABSTRACT

The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple
concept and low computational cost. This method produces the fastest growing perturbation modes to catch the growing
components in analysis errors. However, the bred vectors (BVs) are evolved on the same dynamical flow, which may increase
the dependence of perturbations. In contrast, the nonlinear local Lyapunov vector (NLLV) scheme generates flow-dependent
perturbations as in the breeding method, but regularly conducts the Gram—Schmidt reorthonormalization processes on the
perturbations. The resulting NLLV's span the fast-growing perturbation subspace efficiently, and thus may grasp more com-
ponents in analysis errors than the BVs.

In this paper, the NLLVs are employed to generate initial ensemble perturbations in a barotropic quasi-geostrophic model.
The performances of the ensemble forecasts of the NLLV method are systematically compared to those of the random pertur-
bation (RP) technique, and the BV method, as well as its improved version—the ensemble transform Kalman filter (ETKF)
method. The results demonstrate that the RP technique has the worst performance in ensemble forecasts, which indicates the
importance of a flow-dependent initialization scheme. The ensemble perturbation subspaces of the NLLV and ETKF methods
are preliminarily shown to catch similar components of analysis errors, which exceed that of the BVs. However, the NLLV
scheme demonstrates slightly higher ensemble forecast skill than the ETKF scheme. In addition, the NLLV scheme involves
a significantly simpler algorithm and less computation time than the ETKF method, and both demonstrate better ensemble
forecast skill than the BV scheme.

Key words: ensemble forecasting, bred vector, nonlinear local Lyapunov vector, ensemble transform Kalman filter

Citation: Feng, J., R. Q. Ding, J. P. Li, and D. Q. Liu, 2016: Comparison of nonlinear local Lyapunov vectors with bred
vectors, random perturbations and ensemble transform Kalman filter strategies in a barotropic model. Adv. Atmos. Sci., 33(9),
1036-1046, doi: 10.1007/s00376-016-6003-4.

Introduction

In the past two decades, ensemble forecasting has been
substantially developed to become a powerful approach that
improves numerical weather prediction (NWP). The basic
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principle of the generation of initial ensemble members is
to sample the uncertainties related to the initial analysis
(Epstein, 1969; Leith, 1974). Various ensemble generation
schemes based on dynamical error growth theory have been
tested and used in weather prediction centers; for example,
the bred vector (BV) method (Toth and Kalnay, 1993, 1997)
used at NCEP, and the singular vector (SV) method (Lorenz,
1965; Molteni et al., 1996) at ECMWE. Afterwards, data
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assimilation (DA) schemes were further combined with the
dynamical methods to better sample the analysis uncertain-
ties, such as in the ensemble transform Kalman filter (ETKF)
scheme (Bishop et al., 2001; Wang and Bishop, 2003; Wei
et al., 2006, 2008) which is an improved version of the BV
method, and in the introduction of advanced DA schemes in
the SV method (Lawrence et al., 2009).

Numerous studies have been carried out to compare the
BV and ETKF approaches (Wang and Bishop, 2003; Bowler,
2006; Wei et al., 2006, 2008; Descamps and Talagrand,
2007), from which is has been found that the better forecast
skill of the ETKF scheme than the breeding scheme is mainly
associated with two specific features. One is that the ensem-
ble perturbations of the ETKF scheme can better reflect the
geographical variations of analysis error variance than those
of the breeding scheme. This may be because the BV per-
turbations are tuned by a time-invariant estimate of analy-
sis error variance (“mask”; Toth and Kalnay, 1997), while
the ETKF perturbations at each time are updated through the
DA algorithm. The other is that the ETKF perturbations are
more independent and uncorrelated than the BVs. The BVs
are naturally evolved perturbations that represent the unstable
modes associated with the day-to-day dynamical flow. How-
ever, dynamical flow would drive the BVs to project on the
growing type of directions and thus increase the similarity
of BVs, especially in local regions. Such similarities are re-
duced by the nonlinear error growth in NWP models, but can
also be seen by the eigenvalue spectrum for BVs (Wang and
Bishop, 2003; Bowler, 2006). In contrast, the ETKF ensem-
ble perturbations are orthogonal in observation space (Wang
and Bishop, 2003; Wei et al., 20006).

In view of the interdependence among BVs, Feng et al.
(2014) developed the nonlinear local Lyapunov vectors (NL-
LVs), which are the nonlinear extension of the linear Lya-
punov vectors (LVs). The traditional LVs define a set of time-
dependent orthogonal perturbation structures (Kalnay, 2002;
Trevisan and Palatella, 2011). These perturbations point to
the directions with different growth rates in phase space
specified by positive, null and negative Lyapunov exponents
(Benettin et al., 1980; Wolf et al., 1985; Fraedrich, 1987,
Trevisan and Legnani, 1995; Vannitsem and Nicolis, 1997).
Therefore, the LVs can be used to identify the unstable, neu-
tral and stable subspaces. In reality, on the one hand, the un-
stable perturbation subspace has a significantly smaller di-
mension than the stable subspace, and thus is much easier to
be sampled (Toth and Kalnay, 1997); while on the other hand,
any perturbation, through model integration, will eliminate
the non-growing components in it, and project onto the fast-
growing subspace with relatively small dimension. There-
fore, the identification of unstable perturbations is critical to
the improvement of NWP (Zhang et al., 2015), like the accu-
rate estimation of error variances in the background forecasts
of DA (Trevisan and Uboldi, 2004; Carrassi et al., 2007),
and the generation of ensemble perturbations in ensemble
forecasting (Toth and Kalnay, 1997), etc. This is also why
the LVs are gradually developed and applied in DA, ensem-
ble generation and other areas in numerical forecasting. The
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NLLVs bear some similarities to the LVs; for example, they
are orthogonal to each other and have different error growth
rates from the largest to the smallest. However, they also
have significant differences. The LVs are generated through
a long-term integration using the tangent linear model and
the direction of the leading LV is independent of the initial
perturbation (Kalnay, 2002). In comparison, the NLLVs are
obtained by integrating the nonlinear model from both the
perturbed and unperturbed initial conditions, and represent
different types of instabilities with different rescaling ampli-
tudes of perturbations.

Both the BVs and the NLLVs are nonlinear extensions
of LLVs, and can be dynamically produced by a sequence
of two nonlinear model integrations with a periodic rescal-
ing of their difference. BVs are random samples in the small
fastest growing space, and have consistently large projec-
tion on the leading LLV (Magnusson et al., 2008). How-
ever, NWP models usually have a multidimensional grow-
ing subspace. Various independent fast growing directions
should be comprehensively considered to span the unstable
subspace (Duan and Huo, 2016). The fastest growing direc-
tions captured by the BVs have limited diversity and may
not contain sufficient information to represent the develop-
ment of analysis errors. In contrast, apart from the leading
NLLV (LNLLV) being similar to the BVs, which tend to the
fastest growing direction, other successively orthogonalized
NLLVs point to additional fast growing directions in phase
space. The NLLVs have larger diversity than the BVs and
may capture a larger amount of components in analysis errors
(Feng et al., 2014).

The NLLV method is related to the ETKF method, both
of which are designed to orthogonalize perturbations. In the
ETKF approach, the ensemble perturbation matrix is trans-
formed by the matrix T associated with the covariance ma-
trix of forecast members and observations (Wang and Bishop,
2003). In comparison, the NLLVs are orthogonalized using
the Gram—Schmidt reorthonormalization (GSR) technique.
Given that the ETKF scheme has been successfully imple-
mented in operational forecast centers, it is worthwhile com-
paring the NLLV approach with the ETKF approach. The re-
sults of the BV and the random perturbation (RP) approaches
are also given as reference, and all the comparisons are pre-
sented in a barotropic model. To clarify the differences be-
tween these four initialization methods, the experiments are
implemented in a perfect model environment, and by us-
ing the same analysis and the same forecast model. An as-
similation scheme independent of each ensemble initializa-
tion scheme — namely, the ensemble Kalman filter (EnKF;
Houtekamer and Mitchell, 1998; Evensen, 2003, 2004) — is
used to produce the initial analysis states.

This paper is organized as follows: Section 2 describes
the BV, ETKF and NLLV ensemble generation schemes. An
introduction to the barotropic model and the basic setup of
the numerical experiments is provided in section 3. Section
4 presents the results of the quantitative comparison of the
four ensemble methods. Section 5 provides a discussion and
conclusions.
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2. Initial perturbation schemes

2.1. BV scheme

The breeding method proposed by Toth and Kalnay
(1993, 1997) is used to simulate the error evolution in each
analysis cycle. RPs are superposed on the analysis state to
grow as a perturbation between two model integrations. At
the end of each breeding cycle (12 hours in our experiments),
the perturbations are rescaled by an appropriate factor. This,
without the insertion of further random noise, defines a new
set of perturbations that are used to generate the next per-
turbed initial states. This process is repeated and, as the ef-
fect of the particular initial RP diminishes, the resulting per-
turbations become the BVs. Initially, Toth and Kalnay (1993)
used a global rescaling factor that is close to the empirically
estimated global analysis RMSE. However, to ensure that the
ensemble perturbation magnitude reflects the regionally vary-
ing uncertainties in the analysis, the breeding method used
at NCEP includes an estimated mask as a constraint of BVs
(Toth and Kalnay, 1997). Owing to our experiments having
observations on every grid over the whole field and having the
same precision, the distribution of analysis error variances is
mainly determined by the forecast error variances. Therefore,
only a simple global rescaling factor is applied in this study.
The BVs are calculated using a Euclidean norm. Through a
five-day breeding process, the generated BVs are tuned to the
amplitude of the global analysis RMSE to use as the initial
ensemble perturbations.

2.2. ETKF scheme

The ETKF perturbations are generated based on an en-
semble DA algorithm (Wang and Bishop, 2003). We de-
note X{ and X; as N forecast and analysis perturbations su-
perposed on the control analysis. Forecast perturbations are
listed as columns in the matrix X} and analysis perturbations
are listed as columns in the matrix X}. The scheme is created
to calculate a transformation matrix, T, which transforms the
forecast perturbations according to

X, =X{T. (1)
In this expression, T is an N X N matrix, and can be calculated
as

T=CT+1Iy)"?, ()

where columns of the matrix C contain the eigenvectors of
(X))TH'R'HX}/(N-1), and the diagonal matrix I contains
the corresponding eigenvalues. H denotes the mapping from
the model space to the observation space. R is the observation
error covariance matrix. The ETKF ensemble perturbations
can be proved orthogonal to each other in the space of the
observations (Wang and Bishop, 2003).

The forecast perturbations in each cycle are multiplied by
an inflation factor of 7% to maintain sufficient spread. The
updated ensemble perturbations will be added to the control
analysis to generate the initial conditions for the next filter
step. The length of a cycle is 12 hours and the process is con-
tinued over 5 days to the initial analysis for forecasting. Each
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model grid has the same observation error variance of 0.02,
i.e. the observation error covariance matrix R is a diagonal
matrix with 0.02 entries.

2.3. NLLYV scheme

Let us consider an n-dimensional nonlinear dynamical
system:

d
X0 =Flx®)], 3)

where x(7) = (x1(2), x2(t), -+ ,X(1))T represents the state
vector at time ¢ governed by the dynamics F. Let 6(zy) be
a small error superposed on x(#) at an initial time ¢ = #y. The
differential equation of the small error §(¢) is written as fol-
lows:

“

where J(x(1))8(f) and G(x(t),6(¢)) are the tangent linear terms
and the high order nonlinear terms of the errors 6(¢), respec-
tively. By integrating Eq. (4) from ¢ = t; to ty + 7, the nonlin-
ear error evolution can be obtained:

d
7,90 = J(x(0)8(1) + G(x(1),8(7) .

6(to + 1) = 1(x(10),6(10), 7)6(10) , (&)

where n(x(ty),(0), 7) is the nonlinear propagator (Ding and
Li, 2007). In a chaotic system, each initial error vector tends
to fall along the fastest growing direction. Therefore, for any
initial error vector &' (fy), after a short time 7, & (fo + ) will
capture the fastest growing direction. If the short time 7 is not
taken into consideration, taking é’(fp + 7) as the initial error
01(ty), 61(ty) is defined as the LNLLV here, which is simi-
lar to the BV. The first nonlinear local Lyapunov exponent
(NLLE) along the fastest growing direction LNLLV can be
approximately defined as

1 )
A1(x(t9),61(t0), 7) = T In W

where A;(x(fy),61(tp),7) is the function of the initial state
x(tp) in phase space, the initial error 8;(#y), and evolution
time 7. In contrast, the linear Lyapunov exponent relies on the
assumptions of infinite evolution time and infinitesimal initial
error (Lorenz, 1965; Yoden and Nomura, 1993; Zichmann et
al., 2000), and thus has limitations when applied to nonlinear
error growth. The NLLE has been widely used to investi-
gate the predictability of weather and climate (Li et al., 2006;
Ding and Li, 2007; Ding et al., 2008, 2010, 2011; Li and
Ding, 2011, 2013).

While the LNLLYV tends to the fastest growing direction,
the rest of the NLLVs can be derived via a periodic reorthog-
onalization by the GSR process (Wolf et al., 1985; Li and
Wang, 2008, Feng et al., 2014). The orthogonalized pertur-
bations are then globally rescaled to the initial size and again
superposed on the new analysis to integrate (see Fig. 1). The
process is performed for five days with a 12-hour cycle to
acquire the NLLVs denoted by 6;(7y),62(¢), . ..,0n(tp). This
5-day period is basically close to that used in Vannitsem and
Nicolis (1997) to generate LVs in a quasigeostrophic model.
The NLLVs are orthogonal to each other, representing the

(6)
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Fig. 1. Creation of NLLVs. A group of RPs is initially introduced on the analysis state, and
integrated to the end of a breeding cycle. The orthogonalization processes are conducted regu-
larly. The red solid curve represents the leading perturbed forecast during each cycle, and the
black solid curves represent other perturbed forecasts from the second to the nth fastest. The
direction of the fastest growing mode (LNLLYV, red dashed line) is kept, and the other directions
(black dashed lines) are orthogonalized successively to acquire NLLV; to NLLV,, (blue dashed
line). These perturbations are then rescaled to the same size as the initial perturbations, and
added to the new analysis. After several days of cycling, the perturbations are dominated by
growing components [modified from Feng et al. (2014)].

vectors along the directions from the fastest growing direc-
tion to the fastest shrinking direction in local phase space.
The resulting NLLV perturbations are tuned to the amplitude
of the global analysis RMSE and superposed on the analysis
to generate ensemble members.

Once the NLLVs are obtained, the growth rate of pertur-
bations along each direction can be estimated by the NLLE:s,
which are defined by

1. |6;
Ai(x(10), 8i(t0). 7) = —In W ’

where 6;(fy) is the i-th NLLV at time #y. If we want
to study the dynamic characteristics of the whole sys-
tem, the ensemble average of the i-th NLLE, zi(&(tg),‘r) =
(Ai(x(ty),0i(ty), 7)) (the symbol ( ) denotes the ensemble av-
erage over a great number of different initial states) should be
introduced.

The background forecast errors inserted in the analysis er-
rors are the combined effects of the multidimensional grow-
ing subspace (Palatella and Trevisan, 2015) spanning the NL-
LVs. Therefore, to better sample the analysis errors, the ini-
tial ensemble perturbations are constructed by a simple ran-
dom linear combination of the first N NLLVs (N = 10). The
NLLVs are denoted by 4 = 81,82, ...,0y, then the orthogonal
ensemble perturbations 4 can be calculated by

@)

4. =48, ®)
where B8 is an N X N matrix. The column vectors of B are
constructed by random numbers of a standard normal distri-
bution and are independent from each other. The resulting
ensemble perturbations are rescaled to the amplitude of the

global analysis error and superposed on the analysis to gen-
erate ensemble members.

3. Experimental setup

The two-dimensional quasi-geostrophic model is gov-
erned by the following system of dimensionless differential
equations:

P

a—fu(w,q):o

G=VA—Fy+fo+fohs, in Qx[0,7] > &
Yli=0 = Yo

where the variables ¢ and ¢ are the potential vorticity and
the stream function, respectively; V2 = 5%/0k* + 6% /01* and
J(Y,q) = Yrq: —Yrq; are the Laplacian operator and the hor-
izontal Jacobian operator, respectively; k and / represent the
zonal and meridional coordinates; and ¢ denotes time. The
planetary Froude number F = 0.102, and the Coriolis parame-
ter fo = 10.0. A double periodical boundary condition is used
for Q =[0,K] x[0,L]. The barotropic model has been used
in various studies of predictability and ensemble forecasts
(Barkmeijer, 1992; Cheung and Chan, 1999; Mu and Zhang,
2006; Mu and Jiang, 2008; Durran and Gingrich, 2014).

All the experiments below are performed on a 32 x 16
latitude—longitude horizontal grid. The grid spacing d =
0.2 corresponds to a dimensional length of 200 km, and
the time step dt = 0.006 corresponds to 10 min. The ba-
sic flow is obtained by integrating (10) with an initial state
Yo = 0.5sin(nk/6.4) + sin(nl/3.2) + 0.5, as used by Mu and
Jiang (2008). For simplicity, the topography is only a func-
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tion of the [-direction hy = hy X [sin(27l/3.2) + 1].

The quasi-geostrophic model is integrated for 800 days
as a “truth run”, after a first “spin-up” run of 100 days.
The quality of the forecasts are assessed by comparing with
the truth run. For a fair comparison, the EnKF assimila-
tion method, which is irrelevant to the ensemble generation
schemes, is used to generate the control analysis. The obser-
vations are distributed at each grid point, and are produced by
adding a random noise to the true state. The assimilation pro-
cess is implemented every 12 hours on the stream function.
The details of the EnKF assimilation steps are described in
Appendix A.

Once the analysis states have been obtained, 10-day en-
semble forecasts initialized from the four ensemble gener-
ation methods, respectively, are implemented. All the ini-
tial ensemble perturbations are produced using the Euclidean
norm. The RP perturbations are simply generated by ran-
dom numbers with a standard normal distribution, and then
rescaled to the amplitude of initial analysis errors. The en-
semble perturbations of the RP scheme are flow-independent
and thus can provide a proper reference for the other theory-
based schemes (Magnusson et al., 2009). To clarify the dif-
ferences of the four initialization schemes in a simple way,
in this study, the N = 10 ensemble perturbations for the four
schemes are directly superposed on the analysis state, without
being centered, to generate ensemble members. The statisti-
cal quality of the forecasts is assessed by averaging a set of
100 different experiments, each corresponding to a different
initial state randomly chosen from the 800-day truth run. All
experiments are “perfect model” experiments in which the as-
similation and forecasts are performed with the same model
used for producing the truth run.

4. Results

4.1. NLLEs of the barotropic model

Before using the barotropic model to compute the NLLEs
and NLLVs, it should be ensured that this model is a non-
linear dynamical system and has a chaotic attractor (Li and
Chou, 1997). Figure 2 shows the temporal evolution of the
stream function at one grid point for 800 days. It can be seen

Trajectory of One Grid Point
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that the trajectory presents a chaotic behavior, which indi-
cates the model is suitable for the research on nonlinear error
growth.

To see if different growing directions can be effectively
captured by the NLLVs, the transient error growths of NL-
LVs are measured by the NLLEs. Figure 3 shows the first
50 NLLEs averaged over 800 initial conditions with a one-
day interval. The NLLEs are calculated for the error growth
during the initial 7 = 12 h and the initial amplitude of per-
turbations is 0.01. It can be seen that the first 50 NLLEs are
consistently positive and continuously arranged in a decreas-
ing order. The results demonstrate that the barotropic model
has a high-dimensional growing subspace. The development
of the analysis error is a combined effect of various indepen-
dent growing directions, and the NLLVs may be capable of
capturing the unstable subspace effectively.

4.2. Independence of perturbations

Since analysis errors are poorly known, the initial en-
semble perturbations should be as independent as possible to
sample the possible direction of analysis errors. To see the in-
dependence of the global perturbations, the average variances
explained by the eigenvectors of the ensemble covariance ma-
trix are calculated for the four schemes, respectively (Wang
and Bishop, 2003; Bowler, 2006). The assessments for the
ensemble perturbations superposed on the control forecasts
at the different lead times are shown in Fig. 4. A flatter dis-
tribution of the explained variance indicates better perturba-
tion independence. At day 0, the explained variances for the
NLLYV and ETKF perturbations are strictly evenly distributed,
which can be induced by their theoretical concepts. The RP
perturbations are very close to being orthogonal to each other.
However, the first eigenvector of the BVs explains almost
30% of the error variance when 10 perturbations are used,
indicating that there is certain similarity among the perturba-
tions. That is to say, the effective number of ensemble per-
turbations for the BV method is lower than its actual num-
ber. With the increase in lead time, the similarities among
the ensemble perturbations for the four schemes gradually
increase due to the dynamical evolution on the same basic
flows. The performances of the four initialization schemes
tend to be similar after about day 6.

S 187 -
"g 1.5 — —
S5 1.2 —
- 0.9 — o
% = -
o 0.6 —: :—
a 0.3 —: :—
00 T T T | T T | T T T | T T T
0 200 400 600 800
Time (Days)

Fig. 2. The evolution of the stream function at one grid point of the barotropic model for 800 days.
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Fig. 3. The first 50 NLLEs for the barotropic model with the

evolution time 7 equal to 12 hours and a finite initial amplitude
of 0.01.

Initial ensemble perturbations are created to sample the
possible forecast errors. Therefore, the variance of forecast
errors explained by the subspace of ensemble perturbations is
an important assessment of the quality of perturbations. For
a fair comparison of the four schemes, the ensemble fore-
cast errors are defined as the difference between each ensem-
ble forecast member and the control forecast, while the con-
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trol forecast error is the difference between the true state and
the control forecast. Let us assume the normalized ensemble
forecast errors are denoted by E = ey, es,..., ey, and the con-
trol forecast error is eg. The projection of the control forecast
error on the subspace of ensemble forecast errors would be
derived by p = EE"ey. Then, the error variance of the con-
trol forecast explained by the ensemble perturbation subspace
can be calculated through the correlation between p and ey.

Figure 5 illustrates the variance of analysis errors ex-
plained by the ensemble perturbations superposed on the con-
trol forecasts as a function of lead time for the four methods.
At the initial time, the RP approach performs the worst in
terms of capturing the analysis error direction, as the RPs are
independent of the flow at initial time. The NLLV and ETKF
perturbations have similar explained variance, which is larger
than that of the BV perturbations. This may be due to the
more independent perturbations of the former two approaches
than the latter one (see Fig. 4). The initial explained variances
of the four schemes may also cause their relative performance
afterwards. The ETKF and NLLV techniques basically re-
main similar and the best from day 0 to 10. The BV approach
always has a lower score compared to the ETKF and NLLV
approaches during the 10 days. The explained variance for
the RP, despite exhibiting the fastest increase among the four
schemes, has the worst performance throughout.
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050 1 1 1 1 060 1 1 1 1 060 1 1 1 1
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8 O NLLV | 8 050 - O NLLV| 8 050 O NLLV}|
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2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
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£ £ £
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E B % B x
000l — T ERRBFRE o0l " EREE®E o0l BRE®E® =%
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Fig. 4. Mean explained variances of the eigenvectors of forecast covariance matrices measured from day 0 to 10. The BV, NLLV, RP
and ETKF methods are denoted by triangles, open circles, squares and crosses, respectively.



1042

Variance Explained by Ens Pers (%)

1 1 1 1
0 2 4 6 8 10

Lead Time (Days)

Fig. 5. Evolution of mean error variance of the control run ex-
plained by the ensemble perturbations as a function of lead time.

4.3. Skill of the ensemble mean

The RMSE and the pattern anomaly correlation (PAC)
of the ensemble mean are often used to measure the overall
forecast performance of ensemble forecasts. Figure 6 illus-
trates the RMSE and PAC as a function of time for the four
schemes. The ensemble spread, calculated as the standard
deviation of ensemble members, is also given as a reference.
The ensemble spread of a statistically reliable ensemble sys-
tem is usually close to the RMSE of the ensemble mean for
all lead times (Buizza et al., 2005). From Fig. 6a, it can be

R R R ST R
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025 71 __ NLLV_RMSE 5
1 = RP_RMSE 3
1 —— ETKF_RMSE i
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© 1 i
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seen that for the first 4 days the NLLV, RP and ETKF ensem-
bles have similar RMSE scores, which are slightly smaller
than that of the BV scheme. This may because the BVs are
constrained to a smaller perturbation subspace compared to
the other three types of initial perturbations (see Fig. 4). Note
that the ensemble spread of the RP approach is smaller than
the other three for 0—4 days. This is due to the RPs point-
ing to non-growing directions and will shrink initially (Toth
and Kalnay, 1997). From day 4 to 10, the NLLV has slightly
smaller RMSE and similar ensemble spread compared with
ETKF, while the BV scheme has somewhat larger RMSE
and smaller spread than both the NLLV and ETKF schemes.
This is because the NLLV perturbations, which consider the
nonlinear interactions of growing directions, have a better
sampling of the development of the analysis errors than the
ETKF perturbations, and both of them span more orthogo-
nal and uncorrelated subspaces than do the BVs. Although
the RP approach has the largest ensemble spread, its forecast
skill decreases rapidly and remains the lowest among the four
schemes. This can be explained by the RPs having very lim-
ited ability to capture the evolution of initial analysis errors.
The ensemble spread for both the NLLV and ETKF methods
are closer to their respective ensemble mean errors than the
BV method, which implies that the former two have better
statistical reliability than the latter one. The PAC score in
Fig. 6b presents similar relative performance of the ensemble
mean skill as the RMSE.

Figure 7 shows the ratio of the highest ensemble mean
skill among the four initialization schemes for each of them
as a function of lead time. It can be seen that the ETKF and
NLLYV approaches basically have similar ratios to reach the
highest forecast skill, which is evidently higher than that of
the BV and RP approaches. The RP approach performs better
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Fig. 6. Evolution of the (a) mean RMSE (solid lines) and ensemble spread (dashed lines) and (b) PAC (solid lines) for the BV,

NLLYV, RP and ETKF schemes as a function of lead time.
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Fig. 7. Evolution of the ratio of the (a) smallest RMSE and (b) highest PAC among the BV, NLLV, RP and ETKF initialization

schemes for each of them as a function of lead time.

than the BV approach from day 1 to 4. Thereafter, the ratio of
the RP scheme remains the lowest among the four schemes to
the end of the lead time. The statistical results for each case
basically correspond to the sample mean results.

4.4. Brier skill score

A commonly used measure in probabilistic forecasts is
the Brier score (BS), which can be used to evaluate the re-
liability (BS;¢]) and resolution (BS;e) of an ensemble fore-
cast system (Murphy, 1973; Descamps and Talagrand, 2007;
Stephenson et al., 2008). The score assesses the performance
of the probability forecast of the occurrence of an event .
Further details are given in, for example, Descamps and Ta-
lagrand (2007) and Stephenson et al. (2008). In this paper,
@ is defined as the event ¥ > ., where Y is the climato-
logical mean at each grid point. A smaller value of BS and
BS,q indicates a better forecast skill; while the BS,s acts in
an opposite way. Another event interval (¢ > ¢ + o, where
o is the standard deviation of ) is also introduced for diag-
nostics, but does not appear to affect the relative performance
of the ensemble forecasts. Only the results of the event @ are
shown in this paper.

Figure 8a shows the basic BS evaluated for the four meth-
ods as a function of lead time. The four methods have similar
basic BS scores during days 0—4. The NLLV scheme shows
slightly better performance than the ETKF scheme. The BV
scheme has a lower basic BS than the RP scheme for days
4-10, and both of them perform worse than the ETKF and
NLLV schemes. Their differences in BS performance mainly
come from the BS,.s and the BS; components, as shown
in Fig. 8b. After 4 days, the higher BS,¢ of the NLLV and
the ETKF schemes than the BV scheme may be attributable
to the worse sampling of the analysis errors by the BV ap-

proach. Meanwhile, the former two approaches have better
independence and larger ensemble spread than the BV ap-
proach, which may result in a lower BS, relative to the
BV approach. The RP scheme performs worst among the
four schemes generally. This is because the RP ensemble is
randomly generated, and thus is less likely to describe the
probability distribution of the truth relative to the other three
schemes.

5. Discussion and conclusions

The NLLV ensemble generation scheme retains the ad-
vantage of the BV scheme, which uses the breeding cycles
to capture the development of analysis errors in the assim-
ilation cycles and is very simple and cheap to implement.
Different from the BVs, the NLLV perturbations are period-
ically orthogonalized by the GSR process to identify various
distinguished growing perturbations, and thus have more di-
versity and independence. In this paper, the application of
the NLLV method introduced by Feng et al. (2014) for the
generation of ensemble perturbations is further extended to
a moderately complex barotropic model. Except for the BV
and RP approaches, the performance of the NLLV scheme
for ensemble forecasting is further compared with that of the
ETKF scheme, which is one of the most advanced ensemble
initialization schemes. It is found that the NLLV scheme per-
forms slightly better overall than the ETKF scheme for vari-
ous scores when the observations to be assimilated are evenly
distributed at each grid. This may because the development
of analysis errors can be effectively sampled by the unsta-
ble perturbations acquired by the NLLVs. The BV approach
performs worse than the ETKF and NLLV approaches due
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to the dependence among perturbations, but still dramatically
exceeds the RP approach.

This study simply uses a barotropic model without model
error, and the model size is less than that of operational fore-
casts. However, the quasi-geostrophic model is sufficiently
large to demonstrate the relative performance of the ensem-
ble schemes accurately. Despite the similar forecast skills of
the NLLV and ETKF schemes, the generation of the NLLV's
is significantly time-saving and easy to implement, compared
to the ETKF scheme. The computational expense of the for-
mer is only about one third of the latter in the experimental
environment of this paper. Meanwhile, the quality of ETKF
perturbations largely depends on the estimation of the back-
ground and observation covariance matrices, while an accu-
rate estimate of the forecast error covariance is very challeng-
ing due to such problems as ensemble “collapse” (Anderson
and Anderson, 1999) and spurious correlations at large dis-
tances (Houtekamer and Mitchell, 2001). In a real world
situation where the observations are irregularly distributed,
a prior knowledge of the regional rescaling factors could be
used to modulate the NLLV perturbations to better sample
the analysis error variances. Several current approaches can
provide the estimated masks, like the error growth statistical
method (Pefia and Toth, 2014). Introducing the estimation
of analysis error variances in tuning the NLLV perturbations
may further improve the ensemble forecast skill of the NLLV
scheme.
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Appendix A
The Ensemble Kalman Filter

The true state is denoted by X, Which is derived from
a long-term model integration. The simulated observations y
are generated based on the true state using

y=HXxye +&, (A1)

where H provides a mapping from the model space to the
observation space, and & represents independent realizations
of the noise with a Gaussian distribution N(0,0.02). The en-
semble of forecast states is adopted as background states. The
ensemble matrix is then defined as

X = (X1, %2,...,XtN) - (A2)

where X¢ represents the mean of the ensemble. An ensemble
perturbation matrix can then be written as

X{ = (x5, — X¢, Xp2 — Xp, ..., Xp N — Xf) (A3)
The covariance matrix of the ensemble Xy is:
1 v/ T
Pf = meXf . (A4)

The background forecast ensemble is to be updated by the
observations. The set y;(i = 1,2,...,N) is a set of perturbed
observations that are associated with each previous forecast
of the ensemble. They are defined as:

Yi=ytei. (AS)

The RPs g; follow the same distribution as £. The observa-
tions are assimilated to produce a new analysis of the state:

Xa;i =X, +K(y,—Hx¢;), i=12,...,N. (A6)
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The Kalman gain X is calculated by:
K=PH'"(HPH" +R)™". (A7)

This is actually a weight measuring the ratio of the forecast
and observational error covariance. R is the observational er-
ror covariance matrix.

To overcome the problem of undersampling, a 7% vari-
ance inflation factor is applied to X} in this barotropic model.
Moreover, the number of the ensemble is 100, which is much
smaller than the model dimension. Therefore, the localiza-
tion technique is applied to the matrix Py to prevent spurious
correlations at large distances. This is realized by the fifth-
order function of Gaspari and Cohn (1999) with a distance of
zero correlation equal to 800 km (four grids). The assimila-
tion cycles are repeated for 30 days in each case to generate
the analysis ensemble. The mean X, of the analyzed ensem-
ble x,;(i = 1,2,...,N) is regarded as the initial analysis state
when performing the forecasts.
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